Coherent control of single-photon absorption and reemission in a two-level atomic ensemble.

نویسندگان

  • Shanchao Zhang
  • Chang Liu
  • Shuyu Zhou
  • Chih-Sung Chuu
  • M M T Loy
  • Shengwang Du
چکیده

We demonstrate coherent control of single-photon absorption and reemission in a two-level cold atomic ensemble. This is achieved by interfering the incident single-photon wave packet with the emission (or scattering) wave. For a photon with an exponential growth waveform with a time constant equal to the excited-state lifetime, we observe that the single-photon emission probability during the absorption can be suppressed due to the perfect destructive interference. After the incident photon waveform is switched off, the absorbed photon is then reemitted to the same spatial mode as that of the incident photon with an efficiency of 20%. For a photon with an exponential decay waveform with the same time constant, both the absorption and reemission occur within the waveform duration. Our experimental results suggest that the absorption and emission of a single photon in a two-level atomic ensemble may possibly be manipulated by shaping its waveform in the time domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coherent Transport of Single Photon in a Quantum Super-cavity with Mirrors Composed of Λ-Type Three-level Atomic Ensembles

In this paper, we study the coherent transport of single photon in a coupled resonator waveguide (CRW) where two threelevel Λ-type atomic ensembles are embedded in two separate cavities. We show that it is possible to control the photon transmission and reflection coefficients by using classical control fields. In particular, we find that the total photon transmission and reflection are achieva...

متن کامل

Quantum state transfer between matter and light.

We report on the coherent quantum state transfer from a two-level atomic system to a single photon. Entanglement between a single photon (signal) and a two-component ensemble of cold rubidium atoms is used to project the quantum memory element (the atomic ensemble) onto any desired state by measuring the signal in a suitable basis. The atomic qubit is read out by stimulating directional emissio...

متن کامل

Two-photon dynamics in coherent Rydberg atomic ensemble.

We study the interaction of two photons in a Rydberg atomic ensemble under the condition of electromagnetically induced transparency, combining a semiclassical approach for pulse propagation and a complete quantum treatment for quantum state evolution. We find that the blockade regime is not suitable for implementing photon-photon cross-phase modulation due to pulse absorption and dispersion. H...

متن کامل

Coherent control of collective spontaneous emission in an extended atomic ensemble and quantum storage

Coherent control of collective spontaneous emission in an extended atomic ensemble resonantly interacting with single-photon wave packets is analyzed. A scheme for coherent manipulation of collective atomic states is developed such that superradiant states of the atomic system can be converted into subradiant ones and vice versa. Possible applications of such a scheme for optical quantum state ...

متن کامل

TWO PHOTON TRANSITIONS IN THE OPTOGALVANIC SPECTRUM OF NEON

Seventeen two-photon transitions for neon have been observed in the 580- 635 nm spectral region for use in the spectroscopic study of its higher excited levels, which are not accessible by one-photon absorption. To compare the two and one-photon absorption signals originating from the same lower level, an effort was made to record single-photon optogalvanic spectrum in the available wavele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 109 26  شماره 

صفحات  -

تاریخ انتشار 2012